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1. Introduction and Summary 

We are pleased to be able to contribute to this Festschrift in honor of Lajos Takäcs on his 70th 

birthday. In this paper we try to emulate Takats by seeking the essential mathematics underlying 

a probability problem of applied relevance. Like Taksfcs (1962, 1963, 1967), we focus on the 

single-server queue. 

In particular, we focus on small-tail asymptotics for the steady-state waiting time W and the 

steady-state workload L We find general conditions under which 

x~HogP(W> x) -» -8* asjf-»« (1.1) 

for 6* > 0, and similarly for L We call the constant 6* in (1.1) the asymptotic decay rate. The 

following elementary proposition helps put (1.1) in perspective. It is easily proved using 

integration by parts; e.g., p. 150 of Feller (1971). 

Proposition 1.  For any random variable Z and positive constant 8*. the following are 

equivalent: 

(i)      x"xlog/»(Z > x) -> -8* asx -» •< 

(ii)     sup{8*0:£*,z <«} -8\- 

(Hi)    For all t > 0. there is an x0 ■ x0(t) such thai 

enr+tu s F{Z y x)i e-ir-t)M for atf X > Xo . 

there is currently great interest in small-tail asymptotics such as in (1.1) because of possible 

applications to the design and control of emerging high-speed communication networks, in 

particular, it has been recognized that asymptotic decay rate functions (defined below) that 

determine asymptotic decay rates such as 8* in (1.1) may be used to create effective baodwidrhs 

for admission control and other network resource allocation problems: see Gibbens and Hunt 

(1991). Kelly (1991). Guerin. Ahmad! and Naghshineh (1991). Chang (1992). Whin (1992), 
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Elwalid and Mitra (1992), Baiocchi (1992), Choudhury and Whin (1992), Sohraby (1992) and 

Chang, Heidelberger, Juneja and Shahubuddin (1992). The last reference also illustrates how the 

asymptotic decay rates may be used to speed up simulations. Our approach here is most closely 

rated to the papers by Whitt (1992), Chang (1992) and Chang et al. (1992). In particular, the 

results here provide theoretical support for the procedures in Whitt (1992). 

In many cases, a stronger limit than (1.1) holds, namely, 

er'P(W > x) -> a* as x -* - (1.2) 

for positive constants 8* and a*. Then we call a* the asymptotic constant It is easy to see that 

(1.2) implies (1.1) but not conversely. An M/G/l queue for which (1.1) holds but (1.2) does not 

appears in Example 5 of Abate, Choudhury and Whitt (1992a). Then 

P(W > x)-eu-3/ae"r* as x ->... where f(x)-g(x) means that f(x)/g(x) -> 1. In this 

paper we focus on the weaker form (LI). For work focusing on (1.2), see Abate, Choudhury and 

Whin (1992a,b,c). Asmussen (1989). Asmussen and Perry (1992), Neuts (1986), Tijms (1986). 

van Ommeren( 1986) and references in these sources. 

When (1.2) holds, a natural approximation for the tail probabilities is P(W > x)*a'e~r' 

for x not too small Since the asymptotic constant a* in (1.2) is often not easy to obtain. Abate. 

Choudhury and Whitt (1992a) suggest the simple approximation a* =8* EW. For some purposes. 

e.g., for percentiks, even a=l is satisfactory. In many cases, a*=l produces a bound, i.e.. 

P(W > x) £ t~*'\ see p.269 of Asmussen (1987) and Chang (1992). These exponential 

approximations can also be used with (1.1), even though (1.1) does not provide as much support 

as (12). However, Example 5 of Abate, Choudhury and Whin (1992a) shows that the quality of 

the approximation provided by the asymptotics can deteriorate dramatically when (1.1) holds but 

(1.2) does not Moreover, for the admission control problem, it is important to note that the 

quality of the approximations for the tail probabilities provided by the simple one-term 
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exponential approximations also can deteriorate dramatically when the number of independent 

sources increases; see Choudhury, Lucantoni and Whitt (1993). 

In this first section, we present our main result and discuss its implications. We give proofs in 

Sections 2-8 and examples in Section 9. In $1.1 we state our main result for W; in §1.2 we 

discuss some implications and related results; in {1.3 we state our main results for L, which 

follow directly from the results for W by discretizing the processes; and in 51.4 we give sufficient 

conditions for W and L to have the same logarithmic asymptotics. This involves the logarithmic 

asymptotics of the time-stationary and customer-stationary (embedded-stationary or Palm- 

stationary) versions of the arrival process. In 51.5 we discuss logarithmic asymptotics for 

steady-state queue lengths. 

1.1 The Main Result 

Let [Xm : H i 1} be a sequence of real-valued random variables and define the associated 

waiting-time sequence {W„ :n fcO} recursively by letting WQ * Oand 

W.*i -IW. +*„♦!!♦. **0. (1.3) 

where Ul* ■ mufx.O).  Let S0 * 0 and Sm * X,+...+*,,, nil.   Let *> denote 

convergence in distribution. 

Theorem 1. Let [Xn : n Z 1} be strictly stationary, If there exists a junction y and positive 

constants 6* and e* such that 

(i) n-l\ogEe     -* ¥(«)<*"» -* •• /«r la - e'l < e\ (1.4) 

(it) V is finite in a neighborhood of 9' and äfferentiabU et 6* with y(6*) »Oand 

y'(9,)>0,and (15) 

M)EeVSt <m for nil (16) 

thenWm*> Wasn -* - and (U) holds. 



A significant feature of Theorem 1 is that there are no independence or Markov assumptions. 

Instead, we have condition (1.4) involving the asymptotic behavior of the cumulant generating 

functions of the partial sums S„, as in the Gärtner (1977)-Ellis (1984) theorem of large deviations 

theory; see p. 14 of Bucklew (1990). (For a discussion of the connection to cumulants, see 

Choudhury and Whitt (1992).) Indeed, our proof of Theorem 1 follows large deviations theory, 

using exponential changes of measure. For additional background on large deviations theory, see 

Dembo and Zdtouni (1992) and Shwartz and Weiss (1993). 

The condWons in Theorem 1 are very general, but they are not necessary, as we show in 

Example 1 in 99. 

A (familiar) key step in proving Theorem 1 is representing WH as the maximum of reverse- 

time partial sums; i.e., 

W. * S-- nuns* » max {5.-5*}, (1.7) 
OS«« Oikim 

so that, when we extend [Xm} to a doubly infinite stationary sequence [X„ :-«•<«< -.), 

Wm is distributed as Mm ■ max {5* :0 Ski n\, where 50 »0andSA - X_i ♦... +X„k. The 

conditions in Theorem 1 obviously apply to 5» as well as Sk because Ee*5' ■ Eeu*. Since the 

stationarity is required only for this step, we obtain Theorem 1 immediately from the following 

result for maxima of partial sums Mm » max(5»: 0 £ k £ «}, which does not require 

stationarity. We prove the following result in \1. 

Theorem 2. Let [Xm : n k 1} be a sequence of red valued random variables (not necessarily 

stationary). If there exists a function w and positive constants 6* and e* such that (I.4H1-& 

hold and 

limsupfir"* <-for lei <€' , (1.8) 

then it m -* Mw.p.l can -» —and 
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x~l\ogP(M > x) -» -8* flJx->«. (1.9) 

Note that condition (1.8) in Theorem 2 is not needed if {X„} is stationary, because then (1.8) 

is implied by (1.6) in the case n ■ 1. For this, recall that Ee9,z < « when Eee,z < ~ and 

©i < 82 for any random variable Zby Holder's inequality; see (21) on p. 47 of Chung (1974). 

Also note that condition (1.6) is clearly necessary in Theorem 2, because Mt S„ for all n. 

Hence,EeVM ■ ooifEe9'5, » «foranyn. 

We remark that we have also proved a version of Theorem 2 with condition (1.8) replaced by 

Ee%s' < oo for n 2 1 for some 8 with 8 > 6*. This alternative condition might be preferred in 

Theorem 2, but it would require that we strengthen (1.6) in Theorem 1. 

In Theorem 1 we have assumed that the basic sequence [Xn) is stationary. However, this is 

not a great restriction because the focus is on the steady-state waiting time W. Given the 

distribution of W, it is usually possible to choose a stationary version of any given basic sequence 

{XH) suchthat W„ ■» W as «-+-; e.g., see p, 13 of Borovkov (1976). Of course, the conditions 

in Theorem 1 apply to this stationary version. However, under regularity conditions, 

nonstaüonary versions and stationary versions of the basic sequence will couple so that the 

conditions for one enable us to verify the conditions for the other. 

In other words, W typically does not depend on the initial part of the basic sequence [XH\. 

In contrast, the maximum M in Theorem 2 clearly does depend on the entire sequence (Xa). For 

a simple example, suppose that {Xm:nZ2} is ii.d. with a good distribution, but 

P(Xi > x)-Ax~*. Then Xt influences the nil behavior of S, for til n and A/, but not thatofW. 

An important rote is played by the function y in Theorem 1; we call it the (asymptotic) decay 

ra* function, h is significant that y is necessarily convex where it is futile, because log£raz is 

convex where it is finite for any random variable Z. as can easily be seen by applying Holder's 
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inequality. It is important to distinguish the decay rate function y from the associated large 

deviations rate function /(*), defined by 

I(x) m sup{6x- v(6)} ; (1.10) s 

e.g., see Chapter 1 of Bucklew (1990). The functions $ and / are intimately related. Indeed, they 

are convex conjugates of each other; see p. 183 of Bucklew (1990). 

1-2 Implications ard Related Results 

The conditions of Theorems 1 and 2 are easy to check when the basic sequence {X„} is ü.d. 

This special case includes the GI/GI/1 queue (with i.i.d service times independent of iJ.d. 

interarrival times), for which it is possible to obtain the stronger result (1.2); e.g., see p. 269 of 

Asmussen (1987). In this GI/GI/1 case. Abate, Cboudhury and WbJtt (1992d) have shown that it 

is also easy to compute the tail probabilities by numerical transform Inversion, numerically 

integrating i contour integral representation for Ee~*w. 

Corollary 1. (f{Xn:ni l\ is Ltd.. EX < 0. 

Eerxm\ (1.11) 

andEe** < -for-z < 6 < 6* + t for some t > 0, then the conditions of Theorems 1 and! 

hold with y(0) » \og Een, so that (U) and (1.9) hold. 

Proof.  Note mat iT'logfie"* - Et**1 « y(0) when {Xm) is 1J.&  Since w(0) * I. 

V*(0> m EX < 0 and y Is convex. w^O*) > 0.    ■ 

Thu*, for trie GI/Gl/lqueueJtU easy to sec wi« die occayritt function yU. For example, 

in the M/M/l queue with service ratel and arrival rate p. y(0) ■ -Sog((l-0)(l+e/p)]; for 

the D/M/l queue, y(0) » -tog(l-0)-0/p; and for the M/IV1 queue. 

y(0) ■ e-tog(I+e/p). 



It is worth pointing out that the logarithmic asymptotics in (1.1) tend to be robust. In general, 

weak convergence of distributions does not imply that large deviations asymptotics converge. 

However, in this context, weak convergence plus uniform integrability does imply that the 

cumulant generating function converges, and the logarithmic asymptotics here depends only on 

the location of the root (and not, for example, the slope at the root). We illustrate by stating a 

concrete result in the context of Corollary 1. 

Corollary 2. Let {XI: n 2 I) be Ud. for each y > ft where X[ *+X\ as y-> 0 and 

Ee '** < M/br some 0 > Bland some M, for all y. lfX\ satisfies the conditions of Corollary I 

foreachyi ft then (1.1) holds for each y 2 0 and By -* B^asy -» ft 

Proof. SinceJfl * JK? asy-* 0,e,XI me* ' asy-*0. The uniform moment bound implies 

the uniform integrability needed to obtain Ee$xl -+ Ee*** as y -* 0 for all 6 < 05 + e for 

somee.   m 

In order to understand what the asymptotic decay rate 6* in (1.1) primarily depends upon, and 

sometimes to compute 0*. it is useful to consider heavy-traffic asymptotic expansions for 0* 

based oo expanding the Auction y(0) in a Taylor series expansions about 0. Such heavy-traffic 

asymptotic expansions are established in Abate. Qmudhury and Whin (1992a). Abate and Whin 

(1992) and Cnoudhury and Whin (1992). Since togJEr*5* is the cumulant generating function of 

Sm, the derivatives of y(6) are the asymptotic cumulants of 5„. To illustrate, we establish the 

Ant term of the heavy-traffic expansion here. The first term coincides with the familiar decay rate 

associated with exponential heavy-traffic limits; see Kingman (1962), Iglehart and Whit? (1970) 

and Cnoudhury and Whitt (1992). 

Corollary 3. Consider a family of models indexed by p, 0 < p < 1.  Suppose that the 

assumptions of "Theorem 1 hold for each p and 

(i)        £X„(p).-(l-pX 
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(ü)       n~l VarS„(p) -» o2 asn -» oo, 0 < er2 < eo.and 

(iii)      n~1£(Sll(p)-(l-p)n)3 -+ Y<w» -* *>. -*» < Y < *>• 

Then (1.1) holds with 

6*(p) ■ 2(1"p)  + o(l-p) <u p -* 1 . 

Proof. Since log£e's* is the cumulant generating function of S„, we can apply Taylor's theorem 

to obtain 

i        w        * 62Var(,S(1) , 
n-'togfie"5" « -6(1-p) + -—— + o(62) as 9 -* 0 

2n 

uniformly in p and T|, using condition (iii) to get die uniformity in n; e.g., see (4') on p. 268 of 

Chung (1974). Hence 

w(6) * -8(1-p) + ^y- + o(62) as 6 -> 0 

uniformly in p, so that the desired conclusion follows.    ■ 

Another easy case is when the partial sums S„ are Gaussian (but possiMy dependent) for all n. 

When S„ is Gaussian, Theorem 1 takes a very simple form. In particular, dien (1.1) holds with 

0* in Corollary 3. The Gaussian assumption holds approximately in an Ek/Em/l queue for 

suitably large * and m. (As usual, £» stands for Erlang of order *.) A direct Gaussian 

approximation has also been proposed and studied by Addle and Znckerman (1993). This 

analysis provides additional Justification for the heavy-traffic approximation, because it does not 

(at least directly) require a high traffic intensity. 

Corollary 4. Suppose that Sm is Gaussian with negative mean mm and finite variance ojj for aU 

nil. Ifmjn -» mand <*i/n -to1 asn-* •% where m < 0 < e2, then die conditions of 

Theorem 2 hold wftft w(8) - 0m + OV/Z so that (1.9) holds with 0* - -2JB/02 > a //. 

in addition, the bask sequence {X m \ is stationary, then the conditions of Theorem I hoid, so thai 



(1.1) holds. 

Proof. Recall that £exp(65„) ■ exp(6m„+82o2/2) when S„ is Gaussian with mean m„ and 

variance ojj.    ■ 

In queueing theory, (1.3) is the familiär Lindfev equation associated with a single-server 

queue with unlimited waiting room and the first-in first-out service discipline. Then 

X„ M v„ - um where, for n * 1, V» is the service time of customer n and UH is the interarrival 

time between customers n and n +1. With this indexing, we begin with a first customer arriving 

at an empty system. 

Another queueing model that leads to the representation Xm ■ Vm - Um is the queue length 

in a discrete-time single-server queue. Then we interpret V„ as the number of arrivals at epoch n 

and Un as the number of potential departures at epoch n. For this representation to be valid, we 

usually require special Markov or deterministic assumptions in the service process, or 

"autonomous service;" see p. 235 of Borovkov (1976). We use this below in f 1.3. For the 

ATM networks it is often reasonable to assume deterministic service, so that this Lindley 

equation representation is indeed appropriate. For example, if there is at most one service 

completion at each epoch, then £/, ■ 1 for all n. This model variant is considered by Chang 

(1992), Sohraby (1992) and Chang et aL (1992). These authors also focus on the Gartner-Ellis 

condition in (1.4), but Theorem 1 here seems to be new. 

Given Theorems land 2, we want to know when the conditions are satisfied. In the queueing 

context, the conditions can be expressed in terms of the two sequences [Vm:nt\\ and 

(V,;/i2I) separately when the sequences {U„ J and (Vm) are independent (However, note 

that such independence is not required in Theorem I.) 

To state the result, let SI * Vt+...+ Vaandlet5S * C/t +...+ U„. 

2. Suppose that Xm * V, - Um where [Vm:nZ \) and {U.:n 2 \) are 
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independent sequences of nonnegative random variables. If there exist functions \|/v and \|/„ and 

positive constants 8*, e* and M such that 

(i)n'x log Ee9S: -* yv(Q)asn -> ~>for 18-9*1 < t* , (1.12) 

(it) w» irj&iifc in a neighborhood ofQ* and differentiable atO', (1.13) 

(iii)Eers: <«oforn* 1. (1.14) 

tfW£*,v' < MfornS lam/atflel < e', (1.15) 

(v)n'1 log Ee~9s: -* V»(-6) as n -> -,for le-8'l < e' , (1.16) 

^vi> wB üjfniar in a neighborhood of -B* and differentiable at -0\ (1.17) 

(vU)Ee'W' < Mforn i 1 am/a// lei < e' <wuf (1.18) 

fvüi)w(e*) - OamtVCÖ') > Oybry(0) - w,(e)+w„(-e), (1.19) 

then [Xm) satisfies conditiota (1.4H16) and (1.8) with decay rale function w. so that (1.9) 

hauls. If, in addition, iiU„,Vm)} is stationary, then (Xm) is stationary and (U) holds. 

Proof. By the independence 

£*M' ■ Eg***"'^ m EeUiEe"u*, 

lo that 

tog £*"• - tog £*"• + tog Ee"9Si . 

Since 5: 2 a fir'** 11. Similarly. Ee**' - Btw'ETw\ Hence it it dear that the 

anumedcoadtdoot he« Imply the conditions ra Theorem).    ■ 

Assuming that the ardval and service proce«e« je iotependent, we can trett them sepwwely 

To ohtaia Anther resuhj tot iheae separate processes, it is useful to have a relation between the 

asynytoöct for a counting process and the asymptottes tor its inverse partial sum process. For 

this purpose, we apply a result from Glyna and Wbia{1993). 

Let {f. : N 2 OJ be a nondecreasteg sequence of random variables with f0 ■ 0. We think 
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of TH as the arrival epoch of customer n in the queue; then Tn = £/,+... + £/„.   let 

{N(t) : t i 0} be the associated counting process defined by 

N(t) * max{/i 2 0: TH £ t], t 2 0 . (1.20) 

The (familiar) key relation between TH and Mr) mat we exploit is 

[N(t)Zn) ~{T,,!lt} (1.21) 

for all nonnegative n and t. 

A process {Z(0 : f £ 0} will be said to satisfy the Gartner-Ellis condition with decay rate 

function v it 

limr'tag Eem) « w(6) for all 6«R . (1.22) 

fo a discrete^« process, we leu run thio^ 

The associated decay rate function w will be said to atisty Ü* auxiliary large deviations (LD) 

regularity conditions if (1.23HI.26) below hold: 

ß«inf{6:y<e) - +-} >0. (1.23) 

y is diflcreatiabie everywhere in (--, ß), (1.24) 

uW(6) - ♦ « . and (1.25) 

UfJVtf) - w(ß) . (1.26) 

The coadttioas (1.22M1-26) are standard la the targe deviations literature. In particular, 

under cooditiom (1.22H1.26). the prooen (Z(t): 12 0} satisfies the Gärtner (1977) - Bus 

(19S4) theorem. I.e.. the targe deviations principle holds for (Z(f): r 2 0} with rate function I 

la (1.10); see pp. 42-50 of Dembo and Zdtoua (1992). 
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The following result is proved in Glynn and Whitt (1993). let i|T' be the inverse function of 

y. Note that y is nondecreasing, and strictly increasing where it is finite. Hence, for x and y 

finite, v~'(y) = JcifandonlyifyCx) » y. 

Theorem 3. Tjf fte counting process [N(t) :tiO) satisfies (1.22H126), then the inverse 

partial sum process {TH : n 2: 0} dtow too, wi'rA tfce possible exception of (1.22) for 0 = ßr. 

Similarly, if[T„:nZ0} satisfies (1.22H1.26), then {N(t) : r £ 0} does too, with the possible 

exception of (1.22) ford » ß#. In particular, then (1.22) holds for both processes, i.e.. 

Um /"'log £e,W) » V/v(6) (1.27) 
I-*.. 

am/ 

limn-1 log £**r' ■ vr(6) (1.28) 
»-♦•• 

fcoift AoW f with the noted exceptions) and 

¥Ar(6)--Vr1(-e). (1.29) 

where they are fmite. 

Thus, subject to regularity conditions, given the Gartner-Ellis asymptotics for one of N or T. 

we obtain the Gärtner-ElUs asymptotics for the other directly and have the inverse relation (1.29) 

This parallels previous relations between other limits tor N and T. e.g., see Iglehart and Whin 

(1971). |7 of Whitt (1980). Theorems 3 and 6 of Glynn and Whin (1988a) and Theorem 1 of 

Glynn and Whiti (1988b). 

For example, we can apply Theorem 3 to obtain the Ganner-BUs limit (1.28) for the partial 

sums SJ from the Gärtner-Blis limit (1.27) for the counting process N(t) derived for batch 

Markovian arrival processes in Theorem 1 of Choudhury and Whin (1992). Abate. Ghoudhury 

and Whitt (1992c) obtain (1.2) for BMAP/GI/1 queues, while the results here yield (1.1) for 

BMAP/G/1 queues, without requiting that the service times be Li.d Sufficient conditions for 
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(1.22) in terms of embedded regenerative structure are also given in Theorem 7 of Glynn and 

Whitt(1993). 

We now show that deterministic sequences provide upper bounds on 6* when {Un} and 

{VH} are independent sequences; see §8 of Abate, Choudhury and Whin (1993a) for related 

results. We use the queueing notation G/G/l to refer to a general stationary sequence 

{( UH . ^H)} of interarrival times and service times. 

Proposition 3. Among G/G/l models satisfying the assumptions of Proposition 2, the asymptotic 

decay rate 6* is maximized (a) by deterministic service times among all stationary service-time 

sequences [ V„} with given mean EVm, and (b) by deterministic interarrival times among all 

stationary interarrival-times sequences {U„) with given mean EU„. 

Proof. By Jensen's inequality, Ee%z 2 e*a for any random variable Z, so that 

log£r,s: 2 log«,£p* m «e £V, and logEe'*51 i log*#ß: ■ nBEUx. Hence, if y? and and 

w? denote the decay rate functions in the deterministic cases, then wv(0) 2 w?(0) and 

¥■(-6) 2 y?(-8)forail9 > 0, so that the roots in (1.19) must be ordered as indicated    ■ 

More generally, we can establish stochastic comparisons between any two G/G/l systems. 

Proposition 4.  Consider two G/G/l queues satisfying the assumptions of Theorem I.   If 

Eeul & Ee'*1 for allQZO and all n suitably large, then 0J i 0J. 

Proof. The condition implies that w,(0) S w2(0) for all 6 2 a Hence, the roots B' of 

w,(0) ■ 0 must be ordered by Of £ B\.    m 

As in Whin (1992), when (Um) and {Vm} are independent, we can characterize the arrival 

and service decay rate functions v.(-d) and w,(0) from the asymptotic decay rates 0* observed 

in G/D/l and D/G/l queues. To do this, we must consider all possible arrival rates p. 

0<p< 1. so mat the asymptotic decay rate 0* becomes % function 0*(p). 0 < p < 1. Let 

¥■(-0) refer to the case in which EU„ • 1 and let the case of arrival rate p be obtained by 
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considering interarrival times U„/p for all n, i.e., simple time scaling. 

Proposition 5. For G/C/l models satisfying the assumptions of Proposition 2, (a) the arrival 

asymptotic decay rate function V„(-6) with arrival rate 1 is determined by the decay rate 8* (p) 

in G/D/l models with arrival rate p, 0 < p < 1, i.e., by the equation 

V.(-e'(p)/p) + 8*(p) - 0, 0 < p < 1 . (1.30) 

(b) The service asymptotic decay rate function Vv(8) with service rate 1 is determined by the 

decay rate 8* (p) in D/G/l models with arrival rate p, 0 < p < 1, i.e., by the equation 

V,(8'(p))-0,(p)/p - 0 . (1.31) 

Proof. Note that w„(-8) is a decreasing convex function with wi(0) * -1. Hence, the values 

of y„(-8) for 8 > 0 ate determined by the intersection with all lines through the origin with 

slopes less than -1. This is provided by (1.30), after making the change of variables 

8(p) * 8*(pyp. Similarly, wy(8) is an increasing convex function with wt(0) ■ 1. Hence, 

the values ofy»(8) for 8 > 0 are determined by the intersection with all lines through the origin 

with slope greater than+1. This is determined by (1.31).    ■ 

1J A Continuous-Time Analog: The Workload 

We can apply Theorems 1 and 2 to obtain corresponding results for continuous-time workload 

processes; we win only discuss the analog of Theorem 1. Paralleling (1.7), suppose that we have 

a continuous-time workload process {L(t):t 2 0} denned in terms of a continuous-time net 

input process {Y(t) :t Z 0) by applying the usual reflection map, i.e.. 

L(i) - K(i)-inf {Y(s):0 isii),iZ0. (1.32) 

with K0) * 0. Moreover, let the net input process be defined in terms of a total input process 

{/(») :t 2 0) with nondeaeasing sample paths by 
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Y(t) = 7(0 - /, tZO. v1.33) 

In the G/G/l queue, /(/) represents the total work in service time to arrive in the interval [0,/], 

i.e., the sum of all service times of all arrivals in [0,/], but here l(t) can be more general. For 

example, this formulation includes fluid models such as the Markov modulated fluid models in 

Hwalid and Mitra (1992) as a special case (without directly requiring the Markov assumption). 

Paralleling Theorem 1, we will work with a version of /(f) that has stationary increments. We 

prove the following result in §4. 

Theorem 4. Let the net input process {?(;):/2 0} have stationary increments with 

Wit) * (p-l)f where p < 1. If there exists a function y and positive constants 6* and e* 

such that the analogs of (1.4) and (1.6) hold, ie., if 

T' log£f*r(,) -» y(6) of / -> - for le-e* I < e* (1.34) 

and 

Eern,) < - for all t > 0, (1.35) 

and If (1.5) holds for this v, then L{t) m Las tot -* mand 

*_l tog/U > x) -> -6* as x -> m . (1.36) 

Theorem 4 easily applies to superpositions of independent processes, as we now show. 

Propodtk» & Consider the workload process L(t) in (1.32) and (1.33) with 

/(') ■ /i(0 +•• +/«('X where /§(»),...,/,(!) are mutually independent nondecreasing 

processes each with stationary Increments satisfying 

t"lkygEe§,M -♦ y,(0) for le-0'1 < e*. 

Etr,,M < - for all t > 0 and i 
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lf(1.5) holds for 

V(6) = V,(9) +...+ \|/«(9)-e , 

then the conditions of Theorem 4 hold, so that (1.36) holds. 

Proof. By the independence, 

log/*»™ - log&9/'(,) +...+ \ogEe*!'l,)-Bt.   m 

The following proposition treats the standard case in queudng, in which the total input l(t) is 

the sum of all the service times of all arrivals in the interval [0,t], We prove the following in $7. 

Proposition 7. Consider a total input process defined by 

A«) 

/(O-I^.fiO, (1.37) 
4-1 

Suppose that [VJ is independent of[A(t)), 

n~lEe '"    -» w,(8) asn-*~totallQina neighborhood of 6 

and 

r' tog£rMW -* wA(8) ast-*-totaUQina neighborhood of w(6) 

where yA is continuous at y,(Q\ Then 

rlEe*m -» V4(V,(6)) of t -* m . 

\A P^lraEo^T«ie«»forÜ»eGirtDerEai«Limiti:ReUÜntWa«dL: 

The asymptotics for W and L differ, in part, because W is based on the customer-stationary 

(embedded-stationary or Palm-stationary) sequence {U„} while L is based on the counting 

process {A(t)) with stationary increments, which is associated wtm the tinÄ-stattonary sequence, 

say {Ui \, connected by the Pahn transformation, e.g., see Franken et al. (1981). However, we 



17- 

anticipate that we should have Q'w = 82. To establish that relation, we would like to have Palm 

equivalence for the dinner-Ellis limits, i.e., we would like to be able to say that 

n'HogEe ' -> \|/B(6) as n -* «> if and only if n~l\ogEe * -> v;(6) as n -> » and 

V* " v.. where SJ* » t/J +...+ £C« £ 1. We establish a weaker result here. We show that 

if both limits hold with the limit functions v„ and yj satisfying regularity conditions, then 

V« ■ V«- We then use this property to provide conditions under which 6[ » 0^. 

We start by relating the asymptotics for L and JV when the service times are i.i.d. As in 

Theorem 2 and 52 of Abate, Choudhury and Whitt (1992b), we apply the generalized Takacs 

(1963) relation between W and L in a G/GI/1 queue (with i.i.d. service times that are independent 

of the arrival process); see (1.38) below and (43.9) on p. 129 of Franken et al. (1981). 

Proportion S. Ina G/Gl/1 queue. (1. 1) holds if and only if (1.36) holds and 6 w » B\. 

Proof. The generalized Takacs relation yields 

Eeu « 1-p + pEe9WEe9V' . (1.38) 

where Ve has the stationary-excess or equilibrium-rcsidual-life distribution associated with the 

service-dine distribution. By Proposition 3 here. Theorem 10 of Abate, Choudhury and Whitt 

(1992a) and Lemma 1 of Abate, Choudhury and Whin (1992b). Ee,v' < - if Ee*w < «.    ■ 

We now apply Proposition 8 to obtain a form of Palm equivalence for the Gartner-Ellis limits. 

We prove the following result in §5. 

Theorem 5. LetA(t)bea counting process associated with a non-deterministic tir.ie-siationary 

sequence {U*m) and let SI be the partial sums associated with the corresponding customer 

stationary sequence {Um). Assume that the decay-rate function associated with A, yA, satisfies 

the auxiliary ID regularity conditions (1.23H126) with limit of support ß4 in (1.23). Assume 

mat 
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Eemn < oo for all t > 0 and 6 < ß^ (1.39) 

and 

t~llogEe*m -> ^(0) as t -> « for 6 < ßA . (1.40) 

Assume that 

n'hogfif"951 -» V-(-ö) or n -» •• for a« 8 > 0 , (1.41) 

where y,(-Q) is finite and differenriabte for all Q > 0. 7V» 

v.(-6) « vJ(-e) ■ -vÄ'(e) /or a// e > o. (1.42) 

We now relate the logarithmic asymptotes for W and L in a general G/G/l queue when the 

arrival and service processes are independent (but the service times need not be U.d). We prove 

the following result in §6. 

Theorem 6. Consider a G/G/l queue in which the service times {Vm} are stationary and 

independent of the arrival process. Let the arrival process satisfy the assumptions of Theorem 5. 

Let the service decay rate function w, satisfy the auxiliary LD regularity conditions (1.23H126) 

with limit of support ß, in (1.23). Assume that 

Ee**1 <«foratfA21and6<ßv (1.43) 

and 

„-ilogf/S ->wv(8) as Ji-»«for 6 < ßr. (1.44) 

Then (LI) and (1.36) both hold with 8»(p) - 0i(p) for each p. 0 < p < 1. 

IS 

In this section we discuss she logarithmic asymptotics for the steady-state queue length 

(number in system). Let Q and Of be the steady-state queue length at an arbitrary time and at an 

arrival epoch, respectively, which we assume are well defined. As in 11.3. let G/GI/1 mean i.i.d 
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service times that are independent of general stationary interarrival times.  We prove the 

following in §8. 

Proposition 9. In the G/GI/1 queue, (1.1) holds if and only if the the analogs of (1.1) hold for Q 

and Q", in which case 

QQ'QQ- » log Ee**v> » Vv(6V) • (1.45) 

2. Proof of Theorem 2 

In this section we prove Theorem 2. For this purpose, we perform a change of measure for 

each«. In particular, for each n £ 1, let P*n be the probability measure on R" defined by 

K(dxx dxm)~     v      "   P(Xxmdxx Xn*dxn) 
£exp(e 5n) 

m exp(e*5<,-v«(e,))P(X,€dx, Xn*dxH) .        (2.1) 

where^„(8) - logEexp^SJandw.fe*) < •.for« 2 1 by(1.6). 

We base our proof on the following strengthened form of the weak law of large numbers. 

This is closely related to claim 1 on p. 17 of BuckJew (1990) in bis proof of the Gartner-Ellis 

theorem However, we only make assumptions locally around 8*. whereas Bucklew's 

assumptions are more global. We will need the cases * ■ 0 and * ■ ! in our proof of 

Theorem 2. We prove Theorem 7 in §3. 

Theorem 7. Let k be a fixed nonnegative integer, under the conditions of Theorem 2 (excluding 

(1.8) if k m 0), for each t > 0 there exists n0 and TJ ■ T\(t)*[0.l) such that 

P:  vl > e & n." for « 2: «0 . (2.2) 

Since H„ is nondecreasing, Mm -» Afw.p.1. The desired result( 1.9) implies that M must be 

proper. Since P(M > x) ■ P(T(x) < «). where 
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T(x) = inf(n äO:S„ > x) , (2.3) 

it suffices to show that 

x"1 log /»(fU) < oo) -> -6* as x -> oo . (2.4) 

Let UJ be the greatest integer less than or equal to x and let fxl be the least integer greater than 

or equal to x. Now, for e and v given, and any x and n(e), 

P(T(x) < oo) » 2 /»(fCac) * » 
/-I 
«(e) U(I-«H 

s 2 P(T(x) * j) +    2   W*> * /) 
/■I /•*<€)♦ 1 

U(UiwJ 
+     2    ^(r(Jf) -»♦     I     WU) -;).       (2.5) 

Given e, we choose n(e) in (2 J) so that for all n 2 «(e) we simultaneously have 

l«"'*«^)! < min{-^0. , t) (2.6) 

and 

K ev U"!5.-a-vl > , i if (2-7) 

for k m 0 and 1 for some i) with 0 £ n < 1- This is possible because of assumption (1.4) and 

Theorem 7. 

For the first term in (25). 

P(T(X) mj)i P(Sj > x) 

S EJ[t*p(-9'Sj ♦ yy(0*)); 5> > *] 

S expi-e'DfJIexpiv^e*)): Sj > x) 

Sexp<-e'x)exp(w>(e
,)).l (2.8) 

We use (1.6) ID ensure that (2.8) is finite. 
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For the second term in (2.5). note that (starting with the reasoning in (2.8)) 

P(T(x) = ;) S exp(-6'jr)£;[exp(v;(e*)); Sj > x) , 

where 

EJ[exp(«;(e*); Sj > x) S exp -ton FjiSj > x) 

£ exp ,M°U1> 1 Sj> -2L 
'     1-e 

S exp , (-'ot *1) 1 <r's,-v>.£- 

Sexp llJPM) f lr,5/-vi>J gv 

Sexp -s°n V Sexp .. tog - /-pi (2.9) 

Hence, 

X    P(T(x) mj)s exiX-S^x) £ n^2 £ exjK-e'xXl-VtT)-1 .      (2.10) 
)««<€)♦ 1 >-| 

For the third term la (2.5), 

Wx) - » S expC-e'^f-lexpy^e*); S, > x]. (2.11) 

where 

£/lexjK^e*)); 5y > x) S exp(V)U')) £ etpOe) & txp(tx( 1 +i)/V).    (2.12) 

For the fourth term in (2 J). 
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P(T(x) =;) ZPiSj.i ix.Sj > x) 

£ EJ[expi-Q'Sj + v;(6*) ; 5;., S x, Sj> x] 

S exp(-e,jr)exp(v;(6*)/»;(S;_1 S x) , 

/»;(S;_, Sx)ZPj Sj-i * 1+e «'; 
5, 

s/>; l&L-vl>   cv 

I   J 1+e 

;        1+e 

SiT' 

byllieoreniSwtth« ■ 1. Since v/B*) S -(logr|)/2by(2.6)for,/inthissum, 

2    P(r<jt) - j) i expc-e'^xn^ s expc-e'xxi-V^)-'.    <ii3) 
;-U(l*eVVj ;-0 

Combining (2.5), (2.8), (2.10). (2.12) and (2.13), we obtain 

P(T(x) <m)i exp(-e*x) ( 2exp(v>(e*)) + (1-Vtfr1 

i-i 

+   lH + j exp(ejr(l+eW) + (1-VrTr1 } . 

Hence, using condition (1.6), 

fitnV'logPWx) < ~) S -8' + e(l+eW. 

Since e was arbitrary, 

.-i limx~*logJ»(r(x) < -) S-8' (2.14» 

We now establish the lower br^jnd. For this purpose, let «(t) - fx(l+e)Aj. Hien 
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P(T(x) < -) 2> P(SmU) > x) 

k £;(£)[exp(-e*5TO(e) + ym(c)(Q'); 5m(£) > x) 

m(£)v 
2 ^«(e) 

^ £m(e) 

* £«(« 

2 exp 

exp(-8*Sm(£) + ¥*<£)(6*) ; Sm(£) > 1+e 

exp(-e'Sm(e) + \j/m(£)(e*) ; m(t)-l\Sm(e) - vl < ev 
1+e 

exp(-e'v*l±2S)m(e)) + Vm(e)(6') ; ImCer1^) - vl < JZ. 

-e*vll^m(£) + VM(e)(e-) ^*(e) U(er'5m(e)-vl < -2L 

Since 

/»: «•(e) \m(tyxSm(t)-v\ < 6V 

1+e 
-+ 1 as x -* o» 

by Theorem 5, 

Um*-llogP(r(jt) < -) i Urn j-e'viV^- — - 
*-♦«• *-*m I l+e x 

en(e) 

i-0*(l+2e)-e(l+e)/v 

Since e was arbitrary, we conclude that 

limoT'log/'d'Or) <•.)*-«' (2.15) 

Combining (2.14) and (2.15) completes the proof. 

3. Proof of Theorem 7 

.•*. As before, let ya(6) * log Et ' and recall that n~ly„(8) -+ y(6) as n -»•• fur 

IS—0*1 < e* where 8* and e* are as assumed. We start with the case * * o. Then, for each 0 

0 < e < e\ 
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K(n"lSH > v + e) S exp(-en(v+£))£;exp(65„) , 

where 

exp(-en(v+e))£;exp(es„) ■ exp(-efi(v+e))Jexp(ex)exp(e,x-v„(e,))/,(5(,e<it) 

- exp(-e/i(v+e))exp(Vi,(e+e*)-v„(e')) . 

We choose n0 in Theorem 7 suitably large so that y„(6+8*) < «, which is possible by (1.4) 

and(1.5). We use the fact that Ee9,z < oowhen£*9,z < »andO < 6( < 62,hence 

fimVMog/^/T'S^v+e) £ v(Ö*+6)-V(6*)-e(v+e) . (3.1) 

However, by Taylor's theorem, 

v(e+evv(6#)-e(v+e) - w'(e')e+o(eM(v+e) as e -> o 
■ -8e + o(9) as Q-*0 . 

Hence, we can choose 61 withO < 0- < e* so that 

¥<•*♦•!)-¥<•■ Mi(v+t) < -6,e/2 

and 

lim*~lk>gP2i*~lSm > v+e) i -0|C/2, 

which establishes one half of (12). 

On the other hand, for 0 < 0 < c*. 

K(*"lSm < v-e) - F£(-65. > -0«(v-e)) 

£ exp(0ii(v-e))£^exp(-O5ll) . 

where 

exp(0A(v-e))£^exp(-05N) ■ exp(0ii(v-e))Jexp(-0jr)/,;(5-eijr) 

- exiKOiCv-tWeapCw^O'-©)-*^©*)) . 
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Hence, 

iimP*(n-lSH < v-e) £ e(v-e)+y(e*-e)-v(e') . (3.2) 

Then, as before, 

v(e,-e)-v(e*)-9(v-e) * -ee+o(6) as e -♦ o 

so that we can choose 62 with 0 < 82 < e* so that 

v(e*-e2)-y(e*)+e2(v-e) s -e2c/2 

and 

JJmirilogJl£(*'15„ < v-e) S -e2c/2 , 

which completes the proof fort « 0. 

For * £ 1, we first note that £cxp(6(5,-5,_t)) < - for all lei < 5 for some 6 > 0 if 

condition (1.8) holds. To see mis, apply the Cauchy-Schwarz inequality * times to obtain 

£exp(e(5.-5,,.»)) S (£exp(ejr.)2)l/2£(exp(e(511.I-J..t)
2),/l 

S (£exp(26X1,))
l/,£(exp(2e(5.-, -5„_*))l/2 

We choose n0 suitably large so thai, for some finite M. 

(ä^K«^')»...fif2*"""")2-  < tf 

for all /1 i «0. which is possible by assumption (1.8). 

For* 2 1, we then have 
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^(n-'S„_t > v+£) <, exp(-6n(v+e))£;;exp(8S„_t) 

^exP(-e/i(v+e))Jexp(e2Jc,)exp(e,£jt,~vII(e
,))P(>:,€<it1 Xnedxn) 

^exp(-e^(v+e))£[exp((e+e•)S(1-e(5,-S--t)-vÄ(e•))] 

icxp(-e^(v+£)(£cxp(p(e+e•)5)l))
,/''(£cxp(-fle(5„-5),_t)))

,/«exp(-v#,(8•)) 

for positive pwaAq with />~l +^"' a 1 by Holder's inequality. We choose p sufficiently close 

to 1 and 6 sufficiently small so that />(8+8*) is within the required neighborhood of 6* and 

qB < 5, so that E txp(-qQ(S,,-Sm-k))
y* is bounded for n i n0. Hence. 

ÜmV1 log/»;(IT'S,.* > v+c) S -eCv+O+vOKe+eV'-vO') .      (3.3) 

Since p was arbitrary, we can letp -> 1 in (3.3) to obtain the analog of (3.1) with S„.k instead of 

*.. 

Similarly, 

'SO»"1*,-* < v-t) i exp(e«(v-«))£:exp(-e5(l_») 

$ exp(6ii(v-e)J extfVxxJex|Ke'£x<-v.(e*))/>(jr,«<ü, X.«*,.) 

Sexp(0ii(v-e))£[exp(e,-e)S.+e(5),-S._»)-v.(e,)J 

J£ exp<ell(v-t))(£exI)0»(e•-e)5.)),*(£«p<fle(S(,-5JI-»))),/*ex|>(-¥.(e•)) 

for positive p and 9 with f~'+4*' * 1 by Holder's inequality. Reasoning as in (3.3), we obtain 

UmV'tog/SOi"1*,,-* < v-e) s eCv-O+wOKe'-e))1*-*^*).       (3.4) 

Letting/>-»l in (3.4) wt obtain the analog of (3.2) with £„_* instead of 5.. The rest of the proof 

is the same at for * » 0. 
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4. Proof of Theorem 4 

We construct discrete-time processes satisfying the conditions of Theorem 1 that suitably 

approximate the continuous-time processes. In particular, for any 5 > 0, we construct a 

discrete-time waiting-time process {W*} by defining service times V* and interarrival times U* 

via 

V* » /((n + l)5)-/(n5)   and   U\ * 8 , n 2 1 . (4.1) 

Since EY(t) m pt for p < 1, £V* < EU*. We initialize by setting W§ = L(0). Then, by 

induction, we have 

IV* £ L(nh) £ IV* + 6, n 1 0 . (4.2) 

Since Y(t) has stationary increments. L(t) is distributed the same as sup{ Y(s): 0 S s Z t). 

Since this supremum is nondecreasing, L(t) *> L as /->••. Since wf, »• W* and 

L(n5) ^ tasn -> «o.wehave 

JS^** $ £ett i *•*£*•** . (4.3) 

From (4.3), we see that Et*1 < - if and only if £*•** < -. 

Hence, it suffices to show that sup{6 :£>*"* < «} ■ 6*. For this purpose, let 

Sj ■ V*> +...♦ Vj_|-ii8. Then 

jftKnW4ijÄHir^i (44) 

Therefore, 

EnVlogfir"^ S lloir'log £e,r(,) S limf1 togEr^"*1 . (4 5. 
(-♦». *-*- ns 

Hence. 
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lim/T'log Ee65*- = 8_,\|/(8) . (4.6) 

Since S_,v(6) * 0 if and only if y( 8) = 0, the proof is complete. 

5. Proof of Theorem 5 

By Theorem 3, 

/T'logE*-95" -» vH(-6) - -VÄ^Ö) as n -> «> 

for each 6 > 0. Now we consider the waiting time and workload in the G/D/l queue with the 

given point process as the arrival process. We let the deterministic service times have mean 1 and 

the arrival processes have rate p where 0 < p < 1. This requires that we scale the original 

process. 

By Theorem 1, in the customer-stationary case (1.1) holds for each p, 0 < p < 1, where 

6V(p) satisfies equation (1.30). i.e., 

v.(-e'*(pyp) - -eV(p). o < p < 1. (5.n 

On the other hand, by Theorem 4 and Proposition 7, in the time-stationary case (1.36) holds for 

eachp.O < p < 1. where the decay rate 8t(p) satisfies 

pvx(¥r(81(p)))-ei(p) - pv4<ei(p))-eZ(p) - o. (5.2> 

because the decay rate function oM(pr) is pyA. However, by (1.29). (5.2) is equivalent to 

-v:(-ei(pvp) - ¥iI(ö2(p)/p) - ei(p). o < P < i. <5.?> 

By Proposition 8.8V(p) ■ 8j>(p)for0 < p < 1. Hence. (5.3) becomes 

V:(-8V(pyp) - -8V(p). 0 < p < 1 . (5 4i 

Rutty, by Proposition 5. (5.1) and (5.4) imply that v» * ¥■•    ■ 
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6. Proof of Theorem 6 

By Theorem 5, \|/«(-6) = -VÄl(ö). Paralleling the proof of Theorem 5, we have 

V«(-e^(p)/p) = -VvOW(p)) . 0 < p < 1 , (6.1) 

instead of (5.1) and 

pv>i(v»<ei(p))-e[(p) - o, o < p < i, (6.2) 

instead of (5.2). However, (6.2) is equivalent to 

Vil(e[(p)/p) » VvOKp)) , 0 < p < 1 . (6.3) 

Since VÄ!(9) ■ -V«(-9). (6-3) coincides with (6.1), so that we must have 8[(p) ■ 8V(p). 

0 < p < 1.    ■ 

7. Pro* of Proposition 7 

Note that, for any e > 0, there is an n0 such that 

ggiim m £ ^ ...  ^(i4(0 » „j 
a-0 

£ £e"(,r,(,)*c)P(A(0 - *) ♦ Et '- ' 
«•o 

•iv, 
£ Eetyf,m * *)AU) + £r ' 

for r suitably large. Hence, 

Um Cx\ogEt%m £ ¥4(¥v(6) ♦ «) ♦ « 
i-**» 

Since t was arbitrary and */* is continuous at *M6). 
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Ümrl\ogEe9l(,) ^ VA(VV(Ö)) . 
l-*m 

The reasoning for the other direction is essentially the same.    ■ 

8. Proof of Proposition 9 

We shall work with characterization (ii) in Proposition 1. Note that 

(C*-ir «r-ir 
* -   Z  v, + vy a   X  Vi (8.D 

i-1 i-1 

and 

(fi-D* (fl-D* 
t -    2    ■► V. 2:    £   V,, (8.2) 

where VJ and V, are the equilibrium residual service times of the customer in service (which in 

general depend upon Q* and 0. Since the argument is essentially the same for W wad L we 

henceforth consider only W. To have a useful inequality in the opposite direction« we truncate the 

service times by setting VJ • min{Vm,c),n 2 1. Then 

W S £ V? ♦ e . (8.3) 

Rom (8.1), we obtain 

Be" 2 £(£/"')«•-'. 

so that 6^ ^logf**""1. (AsinProposition 8, we use the fact that Q'w < 6V|.) From (8.3). we 

obtain 

£,•"•* e*£(£e,vI)<rt 

so that 

tog Et*'"^ trr. 



-31- 

Then note that V\, We, QM, Qc and Lc increase stochastically to their limits Vx, W, Q", Q and L 

as c -» oo, see Theorems 4,5 and 8 plus the remark on p. 216 of Whitt (1981). Hence 

Q'Q. £ Urn inf6£- S lim log Eev" "* = log Ee*'mVy < « .    ■ 

9. An Example 

In this section we give an example. 

Example 1. To see mat the conditions in Theorem 1 are not necessary for (1.1) or (1.2), consider 

the G/G/l model with 

PiUu+t m l, Uu+2 - 1 + Ym. Vu+t - 1 + Yn, Vu+2 - 0 for aU n) - 1/2 

and 

PWu+i - I + y- Ca-*a - 1. V|—i - 0. VM « 1 ♦ K.*, for all n) - 1/2. 

where {Ym} is an üd. sequence of exponential random variables with mean 1. Then {U„, V«) 

is stationary with EV„ - 1 < EUm - 3/2. so that p - 2/3. Moreover, it is easy to see that, for 

a 2 1, 

P(W„ > x) m P(W > x) - (1/2)«'1. x > 0, 

but 

P(Su+t - y. . *2«*2 - -a for all a) 

« P(5, - -(a ♦ r,) . $2„4j « r*.*i-(a ♦ r,) for all a) « 1/2 . 

so that 

fir«- . !&•'• + ±*-«"'.>. 

fir1*»»» » i. #-* + J.£f
i<r».i-«-i\) 

and 
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n-'log Ee a" -» V(6) = -6/2 as n -► 

Hence, (1.1) and (1.2) hold, but v(6') ■ 0 for 6* * 0. 
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